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By means of examples involving some simple systems with an infinite
number of degrees of freedom, an analysis is made of the possibility of
the existence of a direct method of proof of stability with the aid of
Liapunov' s functional of the increment of the total energy of a system.
The direct method of proof is used to establish the stability of equi-
librium defined in the linear theory of elasticity.

1. The basis of the direct proof of the classical theorem on the
stability of the equilibrium of a conservative system with a finite
number of degrees of freedom [1]. is the following property of a con-
tinuous function of a finite number of variables: the lower boundary, of
the difference between the values of a function on a sphere of suffi-
ciently small radius with center at a point of a strict relative minimum,
and the minimum value, is positive. This property is the essential point
in the proof of the general theorem on stability [2,3]. In somewhat
stronger form, it plays a role in the theory of the direct method of
Liapunov [4] {definition (4.1)). In order to avoid the introduction of a
new terminology, we will call this property the definite positiveness of
the increment of the function. When one goes over from discrete to con-
tinuous systems, which corresponds to the shift from functions to func-
tionals, then there arise the following questions:

(1) For what metrics of the function space is the property of the de-
finite positiveness of the increment of the functional preserved?

(2) To what extent does the energy integral give a complete picture
of the stability as compared to that given by the results that follow
from the direct solution of Cauchy’s problem?
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2. We will consider the problem on the stability of the equilibrium
of a uniform free string stretched between two fixed points. The plane
motion is described by the equations

puy =Tw,, Oz, t20), u(0,8)=0, u({l,t)=0 (2.1

Here p is the linear density, and T1 is the tension of the string.
The zero initial conditions correspond to the equilibrium

u(z, 1) =0 (2.2

The total energy
1

i
H= % Spu,z dx -+ .;:. g Tyu? de Q.3
] 4]

remains constant along the motion, and is continuous with respect to the
metric

Pr==sup,|u |+ sup, | u, |+ sup, |y, | R ) 2.4

Because of the inequalities
t i 1
iu 2dx > = uldz \ u 2dz > 4 {(su 2
x 2] S 4 & £3 T P lu] 2.5
0 0
the total energy is positive definite with respect to the metrics p,,

and p,
1 1,

P2 = {S (@ +u,lr 4 u?) dx} , ps=sup, ju| Oz (2.6)
0

This implies [4,5) the stability of the equilibrium (2.2) with re-
spect to the metrics p;, p, and p;, py.

As is known [4}, the solution of Cauchy’s problem is given by the

formula
x-+at

s o=tfre—mrueta+l (wea]  (=)T) e

x—at

where u, and v, are functions obtained by an odd, periodic extension (of
period 21) to the entire real axis of the initial values of the devia-
tions and velocities of the points of the string.

From (2.7) one can easily obtain the stability of equilibrium (2.2)
with respect to the metrics p, and p;

pa=sup ul+sup lu ]  O<z<) @8
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and also the stability of (2.2) with respect to Py-

The total energy H is not positive definite with respect to the metric
py or with respect to the "statistical" metric

Prs = Sup, | u |+ sup, | u,| 0<z<? (2.9)

This example shows that the energy integral gives only a partial
picture of the equilibrium stability of a system.

3. If the potential energy of the system is a functional of a function
of one variable, then the fulfillment of the hypotheses of Osgood’s [7]
theorem (which are somewhat stronger than those that are sufficient for
the existence a strong minimum of the potential energy at the position of
equilibrium) will guarantee the definite positiveness, with respect to
the metric p,, of the increment of the total energy of the system, and,
hence, the equilibrium stability with respect to the metrics p;, pj.

It was in this manner that Kneser proved the equilibrium stability of
a string fastened at both ends in a gravitational field [8]. Born [9]
used analogous arguments in his study of the equilibrium stability of
rods.

But for systems, whose potential energy depends on functions of more
than one variable, and on their derivatives of order not greater than one,
one cannot expect [10,11] the positive definiteness of the emergy incre-
ment for a metric of type p,.

Let us consider, for example, the equilibrium stability of a membrane,
clamped along the periphery, under the action of a constant transverse
load. The increment of the potential energy of the membrane has the form

1 du\2  /Ou\2
V=3 SDST’[ 55) + a?)]d’d% ulp=0 3.1)
if one takes account of the membrane’s deviation from the position of

equilibrium. Here, 15 is the stress in the membrane.

Hadamard [10] has shown that this functional is not positive definite
relative to the metric

Ps =sup, ., lul, (=, y)eD (3.2)
However, an analog of the first inequality of (2.5) is valid [11]:

“[(2—: :+ g—:)s]dzdy>01“u'dzdy (3.3)
4 )]
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Here Cl is a fixed positive constant independent of u. On the basis
of this, we can draw certain conclusions on the equilibrium stability
with respect to the metrics p,, p;:

Pe = S“Px,y I u I + supx,y I uxl + supx.yl uy ' + supx_y I u, I’ (zv y) (= D (3'4)
Py = {‘ S (W + u 2+ ul) de dy} " (3.5)
D

4, We consider next the question on the equilibrium stability in a
field of the mass forces (constant in time) of an elastic body in the
linear theory of elasticity. Suppose that on the part o’ of the surface
of a body there is given a displacement u°, independent of time

a =u’(z) (ze0) (4.1)

’

on the part ¢”, the temsion is t,°

t, =t (@) (zEs") (4.2)
while on the part o''’, the contact condition is

ny =0y (), t,, =0 (r=6") (4.3)

ns

’

The case when one of the parts o' and o' is absent, is not excluded

from consideration.

The increment of the potential energy of a body in the investigation
of its displacement from the position of equilibrium, has the form

1
V= 78 Cijki%i, j Uk,1 9O
w
w=0 , ) 4.4)
= (xed), tn=0 (zxes5"); un=0’ tns=0 (IEG"’)
Here, cijkl is the tensor of the elastic constants. The repeated in-
dices indicate summation from 1 to 3. The inequality f13]

S Yij Yij dw>02§ u u, do (4.5)

© o
S Cijit %i,j U1 dm;Csx up; 4 ; do (Korn’ s inequality) (4.6)
b4 w

where C2 and C3 are fixed positive constants that do not depend on u,
inplies the equilibrium stability with respect to the metrics Pg: Pg:

ps = sup, |u |+ sup, YV u; ju;; + sup, | u, | (rEw) (4.7)
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